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I will explain the matrix local equations defining the mod-

uli spaces of stable maps of arbitrary genus, found jointly

by Jun Li and the speaker. These equations already guided

us to find explicit global resolutions for these moduli spaces

in the cases when the genera are one (this follows Vakil and

Zinger), and two. By Murphy’s law, stable map moduli pos-

sess arbitrary singularities. Turning to this, I will explain

Lafforgue’s version of Mnev’s universality, how it leads to

standard local equations for arbitrary singularity types, and

how it should guide to resolve arbitrary singularities.
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Local equations for M g(d,Pn)

Since a stable map [u,C] ∈M g(d,Pn) is given by

u = [u0, . . . , un] : C −→ Pn, ui ∈ H0(u∗OPn(1))),

its deformation is determined by

the combined deformation of the curve C and the sections {ui}.

Since moduli spaces of curves are smooth,

the singularity of M g(d,Pn) is caused by

the non-locally freeness of the direct image sheaf π∗f ∗OPn(1))

of the universal family

X g(d,Pn)

π
��

f
// Pn

[u,C] ∈M g(d,Pn)
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Focusing on the object Rπ∗f ∗OPn(1)) is a correct way to approach.

It is two-term perfect.

To study the non-locally freeness of the direct image sheaf, by as-

signing to each stable map [u,C] the divisor D = u−1(0) ⊂ C, locally

we can view M g(d,Pn) as a stack over the Artin stack Dg of pairs

Dg = {(C,D) | genus g nodal curves C and effective divisors D ⊂ C}

Over each chart V ⊂ Dg, by picking an auxiliary section of the uni-

versal curve ρ : C −→ V , we construct explicitly a two-term complex

R• = [O
⊕(d+1)
V

φ−→ OV ]

whose sheaf cohomology gives the cohomology Rπ∗f ∗OPn(1)).

We then apply the deformation theory of nodal curves to derive a

simple explicit form of the homomorphism φ in R•. Under a suitable

trivialization, we obtain

φ = (0, ξ1, ..., ξd),

where each ξi is a suitable product
∏

j ζj of the pull back of regular

functions whose vanishing loci are irreducible components of the set

of nodal curves in Dg.

Theorem. (Hu-Li) M g(d,Pn) is locally defined by:

[φ] ·wj = 0, 1 ≤ j ≤ n

where w = (0, wj
1, · · · , wj

d) with wj
i ∈ A1.
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Two examples

Ra Rb

Rc

Rd

F

qa qb

qc
qd

If g(F ) = 1, then

φ = [0, ζa, ζbζc, ζbζd, · · · ].

The local equation [u,C] is

ζaw
i
a + ζbζcw

i
c + ζbζdw

i
d = 0, wi

a, w
i
c, w

i
d ∈ A1, 1 ≤ i ≤ n,

in V × A3n. (Other free variables are discared.)

If g(F ) = 2, then

φ =

[
0 a11ζa c11ζbζc d11ζbζd · · ·
0 a21ζa c21ζbζc d21ζbζd · · ·

]

The local equation [u,C] is

[
a11ζa c11ζbζc d11ζbζd

a21ζa c21ζbζc d21ζbζd

]
wi

a

wi
c

wi
d

 , 1 ≤ i ≤ n

in V × A3n. (Other free variables are discared.)
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Resolution: g = 1

Blowing up

ζa = ζb = 0,

this is the locus of curves with 2 rational tails, followed by blowing

up

ζa = ζc = ζd = 0,

this is the locus of curves with 23 rational tails. One calculates and

finds that the singularity is resolved.

So, from local equations to global blowups, we obtain algebro-geometric

version of Vakil-Zinger’s analytic blowups

Theorem. (Vakil-Zinger, Hu-Li) Blowing up M 1(d,Pn) along the

loci of curves with 2, 3, · · · d rational tails, successively, we ob-

tain a resolution of M 1(d,Pn), in the sense that all irreducible

components become smooth and meeting transversally.
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Resolution: g = 2

The sitation is more complex.

If a and b are not conjugate and there are no Weierstrass points,

then, blowing up

ζa = ζb = 0,

followed by blowing up

ζa = ζc = ζd = 0,

One calculates and finds that the singularity is resolved.

If, for example, a and b are also conjugate, we then further blow up

the locus where a and b are also conjugate.

One calculates and finds that the singularity is resolved.

Again, from local equations to global blowups, we obtain

Theorem. (Hu-Li-Niu) Blowing up M 2(d,Pn) along the loci of

curves with 2, 3, · · · d rational tails, successively, followed by

additional blowups invloving the exceptional divisors from

the previous round, Weierstrass and conjugate loci, we ob-

tain a resolution of M 2(d,Pn), in the sense that all irreducible

components become smooth and meeting transversally.

M g(d,Pn) possessess arbitrary singularities when g, d, n vary.

But, there are more classic models for singularity types.
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Mnëv’s universality

Just consider n points on P2:

p1, p2, p3, · · · , pn in P2,

and we want them to be in some fixed relative linear positions: that

is, some points are required to be co-line. Three points in general

linear position, they span P2; co-line, they span a line.

It is convenient to work with linear algebra, so we lift

v1, v2, v3, · · · , vn in k3,

and for any I ⊂ [n], we let

dI = dimk span{vi | i ∈ I}.

The matroid is a way to record the above.

A family d = (dI)I⊂[n] of nonnegative integers dI ∈ N verifying

• d∅ = 0, d[n] = 3,

• dI + dJ ≤ dI∪J + dI∩J , for all I, J ⊂ [n].

is called a matroid of rank 3 on the set [n], where [n] = {1, · · · , n}.

Cd = {(p1, p2, · · · , pn) ∈ (P2)n | their matroids are equal to the fixed d}.

Mnëv observes that Cd contains arbitrary singularities over Z.
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Lafforgue’s schematic proofs

An affine scheme X is defined by a finite number of polynomial

equations with coefficients in Z. Write these equations in the form of

P = Q

where P and Q are polynomials in X0, ..., Xk with positive integer

coefficients. Let us then represent the expression of the polynomials

P,Q as a function of X0, ..., Xk by introducing a number of additional

variables Xk+1, ..., Xm and and by imposing a number of equations of

the form

Xγ = XαXβ

or

Xγ = Xα +Xβ,

or

Xγ = Xα + 1.
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Figure 1.4.

Figure 1.5.

Figure 1.6.

after the other in a generic way, there are no other alignment relations besides the
ones we have specified and therefore no other relations besides the equations (e).

We have defined a certain configuration space C3,n
S . The transition to its quotient

C
3,n

S by the free action of PGL3 is to forget the choice of the origin 0, the first two
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Figure 1.7.

points at infinity∞0 and∞1 defining the line∞ and the two base points 10 and 11
on the lines (0∞0) and (1∞1). On the other hand, the choice of all the other points
∞α and ∞e on the line ∞ and 1α, 1e on the lines (0∞α) and (0∞e) is equivalent
to the introduction of as many additional affine variables in A1.

Thus the configuration space C
3,n

S is naturally isomorphic to an open subset of
a product X × AN .

The projection U → X is surjective because for any point of X with coordinates
Y1, . . . , Yk and for generic T , all the X0, . . . , Xm (related to each other by the
equations (e) and to the Y1, . . . , Yk by X0 = T , X1 = Y1 + T , ..., Xk = Yk + T )
satisfying

Xα ̸= 0, Xα ̸= 1, 0 ≤ α ≤ m.

This results from the fact that the polynomial expressions of Xα, k < α ≤ m, as
function of X0, . . . , Xk each contain a unique monomial maximum total degree ≥ 1
and that this one is assigned the coefficient 1. □

It follows from Mnëv’s theorem that configuration spaces C
3,n

S and thus also

thin Schubert cells Gr3,ES classifying subspaces of dimension 3 of graded spaces
E = E0 ⊕ · · · ⊕ En have arbitrary singularities when n is allowed to be arbitrarily

large. It is a fortiori the same for C
r,n

S and Grr,ES for any r ≥ 3.
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Gelfand-MacPherson Correspondence

We represent n points p1, · · · , pn on P2 by a matrix
a11 a12 · · · a1n

a21 a22 · · · a2n

a31 a12 · · · a3n

 .

The group GL3 ×Gn
m acts on it: GL3 acts by left multiplication; Gn

m

by multiplying column-wise.

Divide by the action of Gn
m first, we obtain

(P2)n) with the residual GL3-action.

Divide by the action of GL3 first, we obtain

Gr3,n with the residual Gn
m-action.

This leads to the Gelfand-MacPherson Correspondence

the GL3-orbits on (P2)n)

are in one-to-one correspondence with

Gn
m-orbits on Gr3,n.

Under the above, we have the correspondence, we have that

Cd = {(p1, · · · ,pn) ∈ (P2)n | the matroid is d = (dI)I⊂[n]}

corresponds to

Gr3,n
d

= {F ⊂ kn | dimkF ∩ EI = dI, ∀ I ⊂ [n]}

where e1, · · · , en is the basis of kn and EI = span{ei | i ∈ I}.
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Lafforgue’s version of Mnëv’s universality

Theorem. (Mnëv, Lafforgue) Let X be an affine scheme of finite

type over SpecZ. Then, there exists a matroid d of rank 3 on the

set [n] such that (Gn
m/Gm) acts freely on the matroid Schubert cell

Gr3,E
d

. Further, there exists a positive integer r and an open subset

U ⊂ X × Ar projecting onto X such that U is isomorphic to the

quotient space Gr3,E
d

:= Gr3,E
d

/(Gn
m/Gm).

Gr3,E
d

// Gr3,E
d

/(Gn
m/Gm) ∼= U

((

� � // X × Ar

��

X

where the south-east down-arrow is surjective so that no singularity

is missed.
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Local equations of Gr3,n
d

The Grassmannian Gr3,E comes equipped with the (lattice) polytope

∆3,n = {(x1, · · · , xn) ∈ Rn | 0 ≤ xα ≤ 1, ∀ α; x1 + · · ·+ xn = 3}.

For any i = (1 ≤ i1 < i2 < i3 ≤ n), let xi = (x1, · · · , xn) such that{
xi = 1, if i ∈ i,

xi = 0, otherwise.

Then, it is known that

∆3,n ∩ Nn = {xi | i ∈ Id,n}= the set of the vertices of ∆3,n.

A matroid d = (dI)I⊂[n] defines the subpolytope of ∆3,n

∆3,n

d
= {(x1, · · · , xn) ∈ ∆3,n |

∑
α∈I

xα ≥ dI , ∀ I ⊂ [n]}.

Theorem. (Lafforgue) Let d be any matroid of rank d on the set [n]

as considered above. Then, in the Grassmannian

Gr3,n ↪→ P(∧3kn) = {(pi) ∈ Gm\(∧3kn\{0})},

Gr3,n
d
, as a locally closed subscheme, is defined by

pi = 0, ∀ xi /∈ ∆3,n

d
,

pi ̸= 0, ∀ xi ∈ ∆3,n

d
.

Gr3,n
d

is cut-out by the coordinate hyperplanes pi = 0,xi /∈ ∆d,n

d
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Some heuristic discussions

• Each divisor Gr3,n
d
∩ (pi = 0) is reasonable, but their intersections

can be arbitrary.

•Goal: Blow up these divisors to make them intersecting transversally.

• What to blow up, and how?

• To find clues, let’s look at Plücker relations, they are in the forms

F̄(123),1uv = x1uv − x12ux13v + x13ux12v,

F̄(123),2uv = x2uv − x12ux23v + x23ux12v,

F̄(123),3uv = x3uv − x13ux23v + x23ux13v,

F̄(123),abc = xabc − x12ax3bc + x13ax2bc − x23ax1bc,

(These relations are for the chart U = (p123 = 1). By permutation of

indexes, any Gr3,n
d

is contained in the chart U = (p123 = 1).)

Blowing up the intersection of two divisors, e.g.,

x12u = x13u = 0, or, x12u = x12v = 0, etc.

can make Plücker relations so messy that we quickly lose control of

their forms, let alone analyse their final forms (by experience).

• My intuition, or put it in a nicer term, my insights are: if I can

separate the terms of Plücker relations into binomials, then it is likely

to reach the goal.
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New models of Gr3,n
d

and “better” local equations

• Also, keep in mind that we want to blow up the loci like

x12u = x13u = 0, or, x12u = x12v = 0, etc.

and these loci also make the terms of Plücker relations vanish.

So, as the very first step, we let V be the closure of U in

U ×
∏
F

PF

where F runs over the Plücker relations in the previous page, and for

F̄(123),1uv = x1uv − x12ux13v + x13ux12v

PF = {[x(123,1uv), x(12u,13v), x(13u,12v)]} ∼= P2

the same for F̄(123),2uv and F̄(123),3uv; for

F̄(123),abc = xabc − x12ax3bc + x13ax2bc − x23ax1bc,

PF = {[x(123,abc), x(12a,3bc), x(13a,2bc), x(12a,3bc), x(23a,1bc)]} ∼= P3.

If we write every Plücker relation as

F :
∑
s∈SF

sgn(s)xus
xvs

,

then we have a rational map

U 99K
∏
F

PF

p→
∏
F

[xus
xvs

]s∈SF
,

e.g.,

[x1uv, x12ux13v, x13ux12v].
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Our new birational model of the chart U

• V is the graph of this rational map, and is birational to U .

What do we gain? Better and neat relations to handle!

x1uvx(12u,13v) − x12ux13vx(123,1uv), x1uvx(13u,12v) − x13ux12vx(123,1uv),

x2uvx(12u,23v) − x12ux23vx(123,2uv), x2uvx(23u,12v) − x23ux12vx(123,2uv),

x3uvx(13u,23v) − x13ux23vx(123,3uv), x3uvx(23u,13v) − x23ux12vx(123,3uv),

xabcx(12a,3bc) − x12ax3bcx(123,abc), xabcx(13a,2bc) − x13ax2bcx(123,abc),

xabcx(23a,1bc) − x23ax1bcx(123,abc).

We see that the terms of all the m-primary Plücker relations are sep-

arated into the two terms of the above binomials.

And, the Plücker relations become linear relations

L(123),1uv = x(123,1uv) − x(12u,13v) + x(13u,12v),

L(123),2uv = x(123,2uv) − x(12u,23v) + x(23u,12v),

L(123),3uv = x(123,3uv) − x(13u,23v) + x(23u,13v),

L(123),abc = x(123,abc) − x((12a, 3bc) + x(13a,2bc) − x(23a,1bc).

These are the governing relations:

• they guide me the blowing up process, and in the end,

• they remain as the only defining relations,

• all the others eventually become dependent!
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Here are the other relations

x1bcx2b′c′x(13a,2bc)x(23a,1b′c′) − x2bcx1b′c′x(23a,1bc)x(13a,2b′c′)

x12bx3acx(13b,2b̄c̄)x(13ā,2ac)x(12ā,3b̄c̄) − x13bx2acx(12b,3b̄c̄)x(12ā,3ac)x(13ā,2b̄c̄)

x13bx2acx(12b,13a′)x(12a′,3b̄c̄)x(12ā,3ac)x(13ā,2b̄c̄) − x12bx3acx(13b,12a′)x(13a′,2b̄c̄)x(13ā,2ac)x(12ā,3b̄c̄)

x(12a,13b)x(13a,12c)x(12b,13c) − x(13a,12b)x(12a,13c)x(13b,12c).

x(12a,13b)x(13a,12c)x(12b,23c)x(23b,13c) − x(13a,12b)x(12a,13c)x(23b,12c)x(13b,23c).

x(12a,3bc)x(13a,2b̄c̄)x(13ā,2bc)x(12ā,3b̄c̄) − x(13a,2bc)x(12a,3b̄c̄)x(12ā,3bc)x(13ā,2b̄c̄).

x(12a,13a′)x(13a,2bc)x(12a′,3b̄c̄)x(12ā,3bc)x(13ā,2b̄c̄) − x(13a,12a′)x(12a,3bc)x(13a′,2b̄c̄)x(13ā,2bc)x(12ā,3b̄c̄)

These will become dependent and can be discarded in the end:

Meanwhile, they possess the following useful properties

• they are square-free.

• they are linear in variables of PF for every Plücker relation F .
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The process to reach the goal

• The blowups are performed on blocks of equations, block by block.

x1uvx(12u,13v) − x12ux13vx(123,1uv),

x1uvx(13u,12v) − x13ux12vx(123,1uv),

L(123),1uv = x(123,1uv) − x(12u,13v) + x(13u,12v).

x2uvx(12u,23v) − x12ux23vx(123,2uv),

x2uvx(23u,12v) − x23ux12vx(123,2uv),

L(123),2uv = x(123,2uv) − x(12u,23v) + x(23u,12v),

x3uvx(13u,23v) − x13ux23vx(123,3uv),

x3uvx(23u,13v) − x23ux12vx(123,3uv),

L(123),3uv = x(123,3uv) − x(13u,23v) + x(23u,13v),

xabcx(12a,3bc) − x12ax3bcx(123,abc),

xabcx(13a,2bc) − x13ax2bcx(123,abc),

xabcx(23a,1bc) − x23ax1bcx(123,abc).

L(123),abc = x(123,abc) − x(12a,3bc) + x(13a,2bc) − x(23a,1bc).

Blowup centers are

Zϑ : (x1uv = 0) ∩ (x(123,1uv) = 0), (xabc = 0) ∩ (x(123,abc) = 0).

Z℘ : (x1uv = 0)∩ (x12u = 0), (xabc = 0)∩ (x13a = 0), and, much more

Zℓ : (L(123),3uv = 0) ∩ (x(123,3uv) = 0).
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How do we know we achieve our goal

The blowing up process is complex, many details are subtle......

In the end, by a 10-page calculation, we obtain

(0.1) J∗ =


J∗(GV,F1

|Γ̃V
) 0 0 · · · 0

∗ J∗(GV,F2
|Γ̃V

) 0 · · · 0
...

∗ ∗ ∗ · · · J∗(GV,FΥ
|Γ̃V

)

 .

such that all the blocks along diagonal are invertible.

This implies

Theorem. For the birational model V of the chart U ⊂ Gr3,n, there

exists a resolution Ṽ −→ V such that the boundary of Ṽ is a simple

normal crossing divisor.

Then, by finding birational slices (hard), we obtain

Theorem. For any matroid, the stratum Gr3,n
d

admits a resolution

G̃r
3,n

d −→ Gr3,n
d
.
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I am rewriting to replace the paper on arxiv:

• focusing on Gr3,n only, so will be more explicit.

• the arxiv paper contains errors, will update once and for all

when a new version on Gr3,n is completed.

• your comments are always welcome, just email me!
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THANK YOU!


